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Overview

Why Video Jittering and De-jittering

Ingredients of Our New Model:
Statistical Models of Jittering and Noise
Dejittering as a Bayesian Inference Problem
From Bayesian to Variational: Data Model and Prior Models

Model Analysis: Existence, Uniqueness, Convergence…

Model Computation
The Alternating Minimization (AM) Algorithm 
Nonlinear PDE Method for Image Estimation
Newton-Raphson Method for Jitter Estimation

Conclusion
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Video Jittering: Why and How

Why: Line synchronization signals (in video tapes or 
wireless communication) are destructed or lost.
How look like: (a) Annoying (b) Small details hard to see 

Jittered
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Mission of  Video Dejittering

Given a single observation, recover the original one 
Simultaneously deal with possible intensity noise
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Statistical Description of Jittering

Random jittering: 
Associated to each horizontal line labeled by y, there is a random
jitter (or displacement) s(y), so that the y-line is jittered:

u(x, y) us (x,y)=u(x+s(y), y).
We model s by a Gaussian white noise with variance         . 

Intensity noise:
Due to the degradation of video storage media, image signal is 
often further polluted by some intensity noise:  

us (x, y) uo(x,y)= us (x,y)+n(x,y).
We assume that the noise is additive and Gaussian with        .

Dejittering as an inverse problem: uo u.
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Image domain Ω suitable for the dejittering problem

We work with an infinite stripe domain Ω: IR X (0, H), to 
practically allow any horizontal Gaussian jittering.
In numerical computation and other steps, we may also 
pay attention to finite box regions ΩR = (-R, R) X (0, H).
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Existing Methods

Time Base Corrector (non-intrinsic): recover the line 
synchronization signatures by denoising the non-picture
parts of video signals. It demands information unrelated
to the image or video contents.

Intrinsic Dejittering : recover the original ideal image 
frame directly based on the observed jittered image data. 
It relies on the intrinsic image structures and features. 
Works by Kokaram-Rayner (1992), Kokaram et al. (1997): 

Use autoregressive (AR) image models
Line registration techniques
Local or semi-local filtering
Compensated by various image processing tools
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Contributions of Our Approach

Propose the first variational model in the literature, which is 
built upon the rationale of Bayesian inference.
The model is clean (a single formula for the objective), self-
contained (no pre- or post- processing is needed), and 
explicitly combines dejittering with denoising.
Propose to apply the BV (bounded variation) image model 
of Rudin-Osher-Fatemi to restore the regularity of jittered 
object boundaries.
Reveal some important properties (existence, uniqueness, 
and convergence…) of the model by the direct method in 
Calculus of Variations and the BV function space.
Design an effective iterative algorithm for the nonlinear and 
non-convex objective, which is implemented by 
computational PDEs and nonlinear optimization tools.
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Our Approach: Bayesian Inference

Dejittering as Bayesian inference:
p(u, s | uo) = p(uo|u, s) p(u, s) / p(uo).

Meaning:
p(u, s | uo) : posterior probability (after observation is given).
p(uo|u, s) : data model, telling how the observation is generated.
p(u, s): prior model. Jittering is often independent of image 

information. Therefore,  p(u, s) = p(u) p(s).
p(uo) : is probability normalization after observation is made, 

makes no essential contribution to the inference.
Bayesian inference is MAP :  max p(u, s | uo)
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Bayesian Goes Variational: Gibbs’ Formula

Taking logarithm likelihood function E[X] = - β ln p(X) :
E[u, s | uo] = E[uo|u, s] + E [u, s] + const.

And MAP becomes “energy” minimization:
max E [ u, s | uo ].

If β = κ Τ = Boltzmann constant * Absolute temperature, then we 
are formally working with the ensemble energy instead of 
probability according to Gibbs formula: p = 1/Z exp (- E/β ).

The data model is simple due to Gaussian noise model:

The prior is separable:   E [u, s] = E[u] E [s].
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(cont’d) prior models for jittering and image

E [u, s] = E [s] + E[u]
The prior model for jittering s:

The prior model for image u:  E[u]
Looking for good image priors is the fundamental problem in IP.
Roughly classified into two categories:
• Stochastic models:  lattice models/Gibbs Random fields (Geman-

Geman, 1984), and statistical learning based on filtering and the 
maximum entropy principle (Zhu-Wu-Mumford, 1997). 

• Function spaces : deterministic; regularity based: square 
integrable functions (classical spectral/Fourier method); Sobolev 
functions (linear filtering theory); functions with bounded variations 
(BV, ROF,1992); Mumford-Shah piecewise smooth model (1989)…

.)(
2

1][
0

2
2 ∫=

H

s

dyys
H

sE
σ



12

The Role of Edges in Video Dejittering

Clue or Clueless (1-D image for example)?

x
Scenario I.  Image is very smooth and featureless.

left or right shifting is hard to detect
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Scenario II.  Image contains clearly identifiable edges.
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Edge-Aware Deterministic Image Models

Edges give crucial visual info for objects recognition and 
representation (such as wavelets), important in computer 
vision from the very beginning (David Marr).

Mumford-Shah piecewise smooth image model (1989)  

E[u, G]= E[u| Γ] + E[Γ] = Sobolev + Hausdorff
Edge set is singled out; the rest is measured by Sobolev.
Very powerful for segmentation. Could be costly for other applications
(where edge is still a crucial hidden feature but not particularly 
interesting or explicitly required, such as inpainting & dejittering).

Rudin-Osher-Fatemi’s BV image model (1992):  E[u]=TV[u].
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Why BV Image Model

BV(Ω)={u|integrable & with finite total variation TV[u]}:

The Sobolev space W(1,1) is its subspace, for which

Generally, TV is a Radon measure, and legalizes edges.
But edges are not explicitly singled out, which greatly reduces 
cost, especially in computation.
Geometry comes clear: The Co-area Formula (De Giorgi, 1961)
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Variational Dejittering Model on an Infinite Stripe

The combination of the above three models:
Gaussian jittering E[s] ( define µ =1/[ var(s) H ] ).
Gaussian noise E[uo| u, s] (define λR =1/[ var(n) |ΩR| ] ).
BV image model E[u]

leads to the variational dejittering model on Ω .

Assumptions & admissible conditions: 
s is in  L2(0, H ). 
u is in  BV( Ω ). [By Sobolev embedding, u is in  L2(Ω). ]
There exists some w(x,y) in BV so that n=uo – ws satisfies
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Why Does the Model Turn Out to Be Uninteresting

Theorem A. Let uo be a given noisy jittered image in
and there exists some w(x,y) mentioned in the 

previous slide. Then,

(u= 0, s= 0) = argmin E[ u, s | uo ].   

The problem is caused by the averaging near infinity.  
Functions in BV die out suitably at infinity, and their behavior
on any compact domain is blanked out by the averaging.
Or simply speaking, the infinity over reacts.

How can the model be appropriately fixed…
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Improved Model and Admissible Conditions

In practice, finite images are extended by zero-padding.
To cool down the over reaction of the infinity, we modify 
the model to

Assumptions and Parameters:
µ, α as before; λ=β /var(n) now introduces the 2nd parameter;
s is in  L2(0, H )  and  u in  BV( Ω );

the observation uo  is in L2(Ω );

by Sobolev embedding & Fubini Theorem, us  is in L2(Ω).
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Separation to Two “Conditional” Energies 

Nonlinear, non-quadratic, non-convex (due to jittering)
Existence and uniqueness become hard to analyze
Thus, we define two “conditional” energies:
u-estimation:

s-estimation:

Also important for our algorithm.
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Existence & Uniqueness of E[u | u0, s]

Theorem B. For any given jitter s, the minimizer in BV 
for E[ u| uo , s] is unique. Furthermore, if there exists a 
minimizing sequence bounded in L1, then the minimizer 
exists.

Unlike in conventional restoration problems (such as 
denoising) on finite domains (e.g., Chambolle and Lions), the L1 

boundedness is not a byproduct of a minimizing sequence.

An example:

• with both bounded L2 norms and TV measures;
• yet L1 norms diverge to infinity.  
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Separability of E[ s | u0, u]

For each y, define   f0(x)=u0(x, y), f(x)=u(x, y); and

Then E[ s| uo , u] could be re-written as

Therefore, functional minimization becomes the 
minimization of a collection of 1-D functions 
e(t)=e(t, y), generally non-quadratic and convex.
Thus uniqueness is not guaranteed. We can say more. 
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Existence and A Priori Bound for E[s | u0, u]

Theorem C. (following notation of slide –1)  Suppose that f0(x) 
and f (x) are both in L2 (IR). Then

e(t) is continuous and the minimizer exists.
Suppose that t = s is one minimizer. Then

Continuity follows from Lebesgue integration theory: 
f(x+t) f(x) in Lp, for any finite p >=1.

( ).  /|| 0 ffs +≤ µλ
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Algorithm and Analysis: The AM-Algorithm

The Alternating Minimization (AM) algorithm:
starting with the zero jittering estimation: s0=0; 
iteratively updating by 

• u-estimation

• s-estimation

Theorem D. The AM algorithm is consistently down-
hill.
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Weak Convergence Theorem for the u-Estimation

Theorem E.   Suppose the jittered image u0 is L2

& u0(-, y) is continuous in x for  a.e. y in (0, H). 
Let   be the sequence generated from 
AM. Suppose that (sn) a.e. converges to some 
s(y) in L2,  and the L1 norms of does not 
converge to     . Then there must exist a 
subsequence (m) of (n), and some u in BV, so 
that in L1,  and
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u-Estimation Based on Nonlinear PDE

Let Ts denote the jittering operator, then 

The formal Euler-Lagrange equation is (distributional sense)

Define Surprisingly it is identical to the E-L 
equation of Rudin-Osher-Fatemi applied to     
Thus techniques such as viscosity approximation and 
lagged diffusivity iteration can be applied (Vogel, 1997).
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Differentiating the s-Estimation

Let <+, +> denote the inner produce in L2(IR).
Assume that f (x) is in Sobolev space W(1,2). Then

Further assume the vanishing conditions at infinity. Take 
the second order differentiation and apply integration by 
parts: 
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Newton-Raphson and Its Robustness

Apply the Newton-Raphson method for s:

In the noise-free case (i.e. infinite λ):

Proposition (robustness of N-R algorithm).  
If   f0(x) = g(x+s) + n(x)  for some g(x) in W(1,2),  then as 
(f, t) gets closer to (g, s),  
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Implementation Issues (I):  Neumann Jittering Model

In numerical simulation and real applications, images are 
given on a finite rectangular domain ΩR=(-R, R) x (0, H). 

We therefore need a boundary jittering model along x.

In our simulation, we adopted Neumann jittering model:
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Implementation Issues (II): Parameter Tuning

For the finite domain ΩR=(-R, R) x (0, H), the data model 
on the infinite stripe Ω is  replaced by:

with λR =1/[ var(n) | ΩR | ]. 

Since µ for the jittering energy is also explicitly known, 
we have only one tunable parameter in implementation, 
namely, α , the weight for the TV measure. 

Rich literature in Inverse Problems for selecting a good α 
(see for example, the recent monograph by Vogel, 2002, SIAM).
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Implementation Issues (III): Jitter Simulation via 
Binomial Distribution

In digital simulation/real television display, jitters can 
occur only at whole-pixel length:  1, 2, 3, … 
We could simulate them by the continuous Gaussian, 
followed by a rounding process (e.g. round (3.14)=3).
In our simulation, we directly apply the binomial noise
model: 

p=1/2 for zero mean. By the Central Limit Theorem, 
Gaussian is  still a good approximation. Thus the squared 
norm is still valid in the model. 
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Numerical Examples (I): BV Based Bayesian Dejittering

Left: Noisy jittered test video frame
Middle: First output from AM,  assuming no jittering
Right:    Final output from AM for the model
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Numerical Example (II): With Variance Normalization

Left:        Noisy jittered test video frame

Middel:   Output based on s5 at step 5 of AM algorithm.
Right:      Output based on ).(stdˆ 555 sss s ÷×= σ

Variance normalization does help recover better small scale details.
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Summary,  Key Point,  and Look Ahead

(Modeling) We have developed the first variational model for 
intrinsic video dejittering, which is self-contained and naturally 
combines dejittering with denoising.
(Analysis) We have analyzed some important properties (such as 
existence, uniqueness, & convergence) of the model.
(Computation) We have proposed the AM (alternating 
minimization) algorithm for the non-quadratic & non-convex 
objective, which is then computationally implemented by 
techniques from nonlinear PDEs and nonlinear optimization.

(Key point) It again shows the power of a good image model.

(Look Ahead) If there exist inter-frame correlations, we expect 
that dynamic tools such as the Kalman filter can play important 
roles in modeling and computation.
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That is all, folks…
Thank you for your patience!

Jackie
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